On transversals of simply connected regions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiling simply connected regions with rectangles

Abstract. In 1995, Beauquier, Nivat, Rémila, and Robson showed that tiling of general regions with two rectangles is NP-complete, except for a few trivial special cases. In a different direction, in 2005, Rémila showed that for simply connected regions by two rectangles, the tileability can be solved in quadratic time (in the area). We prove that there is a finite set of at most 10 rectangles f...

متن کامل

On Simply-connected 4-manifolds

This paper concerns (but does not succeed in performing) the diffeomorphism classification of closed, oriented, differential, simply-connected 4-manifolds. It arises out of the observation (due to Pontrjagin and Milnor [2]) that if two such manifolds Mx and M2 have isomorphic quadratic forms of intersection numbers on #2(Jft-), then there is a map / : M1-^-Mi which is a homotopy equivalence and...

متن کامل

Some results of semilocally simply connected property

If we consider some special conditions, we can assume fundamental group of a topological space as a new topological space. In this paper, we will present a number of theorems in topological fundamental group related to semilocally simply connected property for a topological space.

متن کامل

Connected transversals to subnormal subgroups

Subnormal subgroups possessing connected transversals are briefly discussed.

متن کامل

Connected transversals to nilpotent groups

We prove that a finite group with nilpotent subgroup H and H-connected transversals is solvable. The proof depends on the classification of finite simple groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0142743-x